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atomic steps were present on the substrate surface or 
if silicon diffused below the surface. 

In conclusion, approximate crystallographic match 
between the three pairs of atomic planes (110)/(1120), 
{100}/(01i2), and {111}/(0001) in non-isomorphous 
silicon and sapphire has been found by systematic an- 
alysis of their lattice structures. The latter two matches 
agree with those of Nolder & Cadoff (1965). The same 
two matches have been experimentally verified by 
Manasevit et al. (1965). Parallelism between (110) sil- 
icon and (117.0) sapphire has been experimentally ver- 
ified by Manasevit & Simpson (1964) and by Joyce 
et al. (1965), but the first authors used a substrate 
which was not cut parallel to (117.0), and the second 
authors reported no atomic fit between these two 
planes. Preliminary work in this laboratory, however, 
indicated epitaxy between (110) silicon and (117.0) 
sapphire when sapphire was cut parallel to (1120). 

Acknowledgment is given to R.E. Knox who grew 
the sapphire crystal and to P.E. Friebertshauser who 

deposited silicon on it, at this laboratory. For the privi- 
lege of letting me read two internal reports, acknowl- 
edgment is also given to R.L.Nolder,  H.M.Manase-  
vit, A. Miller, and F. Morritz, all of Autonetics, A 
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The Shape of Two-Dimensional Carbon Black Reflections* 
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A rigorous derivation is given for the shape of a two-dimensional hk reflection for a turbostratic 
structure in which the layers are considered to be disks of radius R. An average disk dimension is 
defined as L,=(n/2)R, and this dimension is obtained from the half maximum breadth of an hk 
reflection by L,~ = 1.772/(B cos 00). The constant differs by only 4 % from that obtained in an earlier 
approximate treatment. This definition of an average dimension differs by 17 % from that which has been 
used in recent treatments of carbon black patterns by the general Debye scattering equation. 

Introduction 

Carbon black is a common example of a turbostratic 
structure. Parallel layer groups are built up out of 
graphite layers, arranged parallel to one another, but 
with random orientation about the normal to the 
layers. Except for crystalline 00l reflections, the random 
orientations of the layers prevent the appearance of 
the general hkl reflections. The individual layers dif- 
fract independently, and we have two-dimensional hk 
reflections. For such a turbostratic structure, the reci- 
procal lattice comprises 00l points and continuous hk 
rods. In a powder pattern, the 00l points give the usual 
powder pattern peaks, and the hk rods give peaks 
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which rise sharply on the small angle side and tail off 
slowly on the high angle side. From the shape of such 
a two-dimensional reflection, it is possible to obtain 
the size of the individual layers. 

The problem of a two-dimensional powder pattern 
reflection from carbon black has been treated by War- 
ren (1941). The graphite layers were assumed to be 
parallelograms of edges Nlal and N2a2, where aa and 
a2 are the usual graphite axes. An average dimension 
La was defined in such a way that for N l a l  -- NEa2 = Na, 
the dimension is given by La = (]/3/2) Na. Approxim- 
ating functions of the type sin 2 Nx/sin 2 x by Gaussian 
functions, the layer dimension La was expressed in 
terms of the breadth at half maximum intensity by the 
relation 1.842 

La = B(X2 ' 20) cos 00 " (1) 
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Although this relation has had considerable use in the 
determination of the La dimension in carbon blacks, 
it can be criticized on several points. It is uncertain 
how much error is caused by the Gaussian approxima- 
tion, a disk shaped layer would be more realistic than 
the parallellogram which was used, and a peak breadth 
at two-thirds of the maximum intensity would be less 
influenced by the 004 reflection which occurs on the 
high angle side of 10. 

A treatment of this problem which avoids making 
the Gaussian approximation, and which covers layers 
of any simple shape, has been given by Wilson (1949). 
Although the method is completely general, the work 
was not carried to the point of obtaining quantitative 
relations which could be used for determining layer 
sizes. The most realistic shape for the graphite layers 
is a disk, and for this shape there is another method 
for treating the problem rigorously which leads to the 
same result as the method of Wilson (1949), and for 
which the final numerical integration is simpler. 

Profile of  a two-dimensional reflection 

We assume graphite layers which are disks of radius R. 
In terms of the two-atom structure factor F, the am- 
plitude from one layer is given in electron units by 

] 
where S and So are unit vectors in the directions of the 
scattered and primary beams. We represent the dif- 
fraction vector in terms of the reciprocal vectors 
blb2b 3 and the continuous variables hlh2h3. (8-80)/2 = 
(h + hi)b1 + (k + h2)b2 + hab3 = H + q + hab3, where H = 
hb~ + kb2 is the vector to the hkO position on the hk rod, 
and q=hlba+h2b2 is a vector from the center line of 
the hk rod. Let em= mla~ + m2a2 where ~m is measured 
from the center of the disk. Since the intensity is ap- 
preciable only for small values of q, the sum can be 
replaced by an integral, and we obtain for the am- 
plitude 

0 

hK 

Fig. 1. The reciprocal space geometry involving an hk rod and 
the sphere of radius r. 

FIRI2n 
exp [2rciqo cos c~] A(eu) = F ~r exp [2rciq. ~m] = ~ 0 0  

m 

odod~= ~ o Jo(2nqo)odo- Aa 2nqR 

where Aa = a2]/3/2 is the area of the two-atom unit cell. 
The intensity per layer is then given by 

(rcR2] 22Jl(2rcqR) 2 

Let M be the number of randomly oriented disks in 
the sample, D the distance to the receiving surface, and 
dV a volume element in reciprocal space. The power P 
arriving at the receiving surface is then given by the 
powder pattern power theorem (Warren, 1959): 

P -  MD2234 g g g Ieu(hlhzh3)sin O dV. (3) 

In reciprocal space, we introduce a spherical shell of 
radii r and r+dr, where r = 2  sin 0/2, as shown by 
Fig. 1. If dS is an element of area on the surface of the 
spherical shell, dV=dSdr=dSd(20)cos 0/2. Incorpo- 
rating this in equation (3), 

sin 0 

Omitting the integration with respect to d(20), and 
dividing by 2~zD sin 20, we obtain P£o, the measured 
power distribution per unit length of diffraction circle: 

MD2 2 
P20 = Ieu(hlh2h3)dS . (4) 

16zc sin z 0 3 

Using I(eu) from equation (2), and introducing a 
multiplicity m(hk) to include the contribution from all 
equivalent hk rods, we obtain the observable powder 
pattern profile P;,k(20): 

P~,k(20)= mMD22F; [zcR2] 2 2J'(2rcqR)]2dS. (5) 
16rc sin2 0 \ Aa ] S g [ 2rcqR J 

Since the intensity differs from zero only for posi- 
tions close to the hk rod (q small), we can replace the 
sphere by the tangent cylinder of radius r. Let q 2 =  
u2+ v 2 where, on Fig. 1, u is in the plane of the paper 
and v is perpendicular to the paper. The element of 
area is then represented by dS=r&odv. Let (2rcqR) 2 = 
a 2-t- z 2 where a = 2rcuR and z = 2rcvR. 

= r d~° 2-~ I ; [ 2 J1( ~ ) z 2 ]j dz. 

S~ [ 2 J l ( ~  ]2 dz = 2 H l ( 2 a ) ( 6 )  
Let a ( a ) =  o a 2 ~  7 

where Hi(x) is the Struve function, defined and tabu- 
lated in Watson (1952). With this abbreviation, 
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p;,k(20) = mMD4ZF z (~RZ'~ 2 2r Q(2zmR)dq). (7) 
16z~sin z0 \ A a  ] ~ o 

Referring to Fig. 1, 

u = r cos ~0 - H = ( r -  H) - 2r sin z (0/2. 

Let 2zmR = roT- x z, where 7 = 2R(r -  H), x = 2@Rr) + 
sin ~o/2, and dx=(z~Rr) ~ cos ~o/2&o. Since there is an 
appreciable contribution only when ~0 is close to ~00, 
we replace cos ~0/2 by cos ~00/2 and take it outside of 
the integral. The value is given by cos ~00/2 = [(sin 0 + 
sin 0o)/2 sin 0] ~ where sin 0o=4H/2. 

With the abbreviation 

X(7) = l/zc/2 Q(IzcT- x21)dx (8) 
o 

we obtain a final expression for the intensity profile 

P~k(20) = mMD43/2RS/2F2X(7) 
2~A2sin 0 (sin 0+s in  0o) ~ (9) 

where 
4R 

7 = --if- (sin 0 - s i n  00). (10) 

The function X0') is readily evaluated from equation 
(8), making use of equation (6) to express Q([z~7-x2[) 
in terms of the tabulated Struve function. The values 
obtained in this way are shown by Fig.2. For large 
values of 7 (7 > 2), X00 can be evaluated by direct in- 
tegration, and we obtain X(7)= z~/(47) +. 

If the problem is carried through by the method of 
Wilson (1949) we obtain 

mMD43/2RS/2Fzy(7) (11) 
P'hk(20)= 2zrAa2sin 0 (sin 0+s in  0o)* 

where 
2 } 

1/S (cos 2rc7S+ sin 2rcTS)dS 

(12) 

and, as before, 7= (4R/2) (sin 0 - s i n  00). Although 
equation (12) is a little more complicated than equation 
(8), it is readily programmed, and the values of Y(7) 
are shown by Fig.2. In spite of the difference in ap- 
pearance, X(7) and Y(7) are identical, and the two 
treatments lead to the same profile. 

Conclusions 

From Fig. 2, the width of the X(7) curve at half max- 
imum is Ay=2.25. In terms of equation (10), AT= 
(2R/4) cos OoB(½, 20). For a disk, it is reasonable to 
define an average dimension by 

La= zcRZ/ZR= @/2)R . (13) 

Combining these expressions, the average dimension 
is given in terms of the measured breadth at half in- 
tensity by 1.774 

La= (14) 
B(½, 20) cos 00 

The numerical constant differs by only 4% from that 
of equation (1). However, the two treatments refer to 
average dimensions La defined for differently shaped 
layers. Relating La to the area of the layer 

Equation (1) A=(2/l/3)L~ La=0"93 A ~ . 
Equation (14) A=(4/rc)L~ La=0"89 A ~. (15) 

In terms of the area of the layer, equations (1) and (14) 
lead to almost identical values. Since a disk shape is 
the more realistic, it is preferable to use equation (14), 
recognizing that the value obtained is La=(rc/2)R 
where R is the radius of the disk. 

Because of the fact that the 004 reflection occurs on 
the high angle side of 10, it may be preferable to meas- 
ure the breadth at two-thirds of the maximum intensity 
since this gets a little farther away from 004. From 
Fig.2 Ay= 1.20 and the average dimension is given by 

0.944 
La= B(2/3, 20) cos 00 ' (16) 

If there is a variation in size, the larger layers con- 
tribute more to the upper part of the peak, and 
equation (16) will give a larger value of La than equa- 
tion (14). It has been suggested by Clarke (1964) that 
the slope of the small angle side of 10 would be more 
nearly free from the influence of (004). If A(20, ¼-¼) is 
the difference between positions at ¼ and ¼ of max- 

imum, 0.384 
La= A(20, ¼-¼) cos 00 " (17) 

The drawback to the use of equation (17) is, of course, 
that it requires measuring a very small A(20) for which 
the instrumental corrections may be very important. 

The peak of the X(7) curve occurs at 7=0.35. This 
represents a shift toward large angle from the position 
where an hkO graphite reflection would occur. 
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Fig. 2. The functions X0') and Y(7) as a function of 7. X(~,) 
is shown by the points, and Y(y) by the continuous curve. 
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d(sin O)=0.352/4R=O.142/La. (18) 

This is close to the same peak shift obtained previously 
by Warren (1941). 

The results obtained here are rigorous within the 
conditions assumed. We have postulated disk shaped 
graphite layers all of one size, with no allowance for a 
size distribution. The results are applicable only for 
graphite layers which are large enough to give well 
developed hk reflections for which it is possible to 
make a breadth measurement which is not influenced 
by neighboring peaks. It is also postulated that the 
layers have random orientation about the layer normal, 
with no modulations in the peak due to neighboring 
layers assuming the graphite orientation. 

For samples in which the layers are very small, it is 
necessary to develop the diffraction pattern from the 
general Debye scattering equation. The problem has 
been treated in this way by Diamond (1957) and War- 
ren & Bodenstein (1965). Both of these treatments fol- 
low Diamond's convention, which in terms of areas 
of disks, amounts to defining an La = 1.9R. This differs 
from the average dimension La=(~z/2)R used in this 
paper. The difference is about 17Yo, and it must be 

kept in mind in comparing results from the two treat- 
ments. 

This work was done in part at the Computation 
Center at Massachusetts Institute of Technology, Cam- 
bridge. We are indebted to Mr F.A. Heckman of Cabot 
Corporation for discussions which suggested the need 
for a more rigorous treatment of the shape of the hk 
reflections. We are also indebted to Professor F.B. 
Hildebrand of the M.I.T. Mathematics Department, 
who pointed out the use of the Struve function in this 
treatment. The contribution by one of us (P.B.) has 
been sponsored by the South African Atomic Energy 
Board. 
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In an ordinary least-squares analysis of gas electron diffraction, the standard deviation for the most 
probable value of a parameter for a molecule depends on the interval of measurements As on a micro- 
photometer recording, that is, on the number of observed points on an intensity curve. 

It is shown that a reasonable estimate of the standard deviation of a parameter can be obtained by 
taking into account the effect of 'correlation' among the points of observations. A general method and 
its simplified form for dealing with the correlation are developed by introducing off-diagonal elements 
into the weight matrix used in the least-squares fit of the observed values. The simplified method is ap- 
plied, as an example, to the electron-diffraction data of silicon tetrachloride, and it is shown that the 
standard deviation of the most probable value estimated by using an infinite number of observations 
does not approach zero. At the same time, it is shown that when a diagonal weight matrix is used for 
simplicity there is an optimum interval for measurements in order to get a correct standard deviation. 
The optimum interval in the example given was about As= 7r/10. 

Introduction 

In a usual method of least squares, the standard de- 
viation for the most probable value is approximately 
proportional to the inverse of the square root of the 
number of observed points used in the calculation. 
Since an arbitrary number of points can be chosen on 
a continuous curve, such as the microphotometer trace 

obtained by experiments of gas electron diffraction, the 
standard deviation for a parameter estimated by the 
least-squares analysis can be made unlimitedly small 
if the number of observations is infinitely increased. 
Such an argument, however, is based on a wrong 
assumption that all observed points remain mutually 
independent even when the interval of measurements 
becomes small. It would thus be desirable to have a 


